Unit 8 Microorganisms & The Immune System CH 16-18

Host Defenses

- Host defenses that produce resistance can be either innate or adaptive:
- Innate: those that protect against any type of invading agent
- Adaptive: respond to antigens by producing antibodies
- Antigen (Ag): a substance that the body recognizes as foreign and causes it to mount an immune response; also called an *immunogen*
- Antibody (Ab): a protein made in response to an antigen and is capable of binding specifically to that antigen; also called an *immunoglobulin*

Innate immunity	Adaptive immunity
general protection (not antigen-	• highly specific for a particular pathogen (antigen-specific)
early phase of host response to bathogens without requiring prior exposure	 late phase response of antigen- specific lymphocytes to antigens
immediate maximal response	 lag time between exposure and maximal response
 does not alter on repeated exposure (no immunological nemory) 	• improves with each successive exposure (immunological memory)
* (rapid, non-specific, no nemory)	* (slower, specific, diverse, memory)

Types of Innat	e Defenses
	kin, mucous membranes, &
2. Chemical barriers like saliva, mucus, & gast	antimicrobial agents in ric juices
3. Cellular defenses like d	lefensive cells & phagocytes
4. Inflammation	
5. Fever	
6. Molecular defenses lik	e inteferon & complement

efensive Cells—Leukocytes	
Granulocytes—have granules in the cytoplasm help the body fight bacterial infections counted as part of a white blood cell differential	l test
Basophils—chiefly responsible for allergic and antigen response by releasing the chemical histar	mine
Dendritic cells —act as messengers between the nnate and adaptive immune systems	5
E osinophils —defend against parasitic infection predominant inflammatory cells in allergic react	
Neutrophils—phagocytes; defend against bacte ungal infection and other very small inflammate processes	

Defensive Cells—Leukoc	toc
Defensive Cells—Leukoc	yles
Agranulocytes—no granules in the cytoplasm	
- contain lysosomes which are small vesicles contai	ning digestive
enzymes that break down any foreign matter that i	s endocytosed
by the cell	
Monocytes—phagocytes; present pieces of pathog	ens to T cells so
that the pathogens may be recognized again and ki	lled, or so that
an antibody response may be mounted	
Lymphocytes:	
1. B-lymphocytes (B cells) which produce antibodie	es in the
antibody-mediated immune response; differentiate	in bone
marrow	
2. T-lymphocytes (T cells) which participate in the	cell-mediated
immune response; differentiate in thymus gland	
3. Cytotoxic cells which participate in the innate im	mune response

Other Defensive Cells

- **Phagocytes**: cells that eat or engulf other materials that circulate through the body
 - aka neutrophils
 - Destroy cell debris & dead cells
 - · Guard the skin & mucous membranes
- Macrophages: cells that engulf large particles • Originate as monocytes
 - Destroy microorganisms & cell debris left over from neutrophils

Brain Check

- 1. What are the 2 types of host defenses that we have?
- a. Inherited & Adaptive c. Inherited & Accepted
- b. Innate & Adaptive d. Innate & Accepted
- 2. What 2 defensive cells act as phagocytes?
- a. Eosinophils & neutrophils
- b. B cells & neutrophils
- c. T cells & neutrophils
- d. Moncytes & neutrophils

Inflammation

- Inflammation: the body's defensive response to tissue damage from
 - microbial infection
 - mechanical injury (cuts, etc.)
 - Heat & electricity (burns)
 - UV light (sunburn)
 - Chemicals (acids, etc.)
 - Allergies

Inflammation—Cardinal Signs

- Increase in temperature
- Redness
- Swelling
- Pain at the infected or injured site
- Usually prevents an infection from getting worse
- The duration of inflammation can be either acute or chronic; acute ends fairly quickly while chronic inflammation occurs when the agent producing inflammation persists in causing tissue damage & making pus

Stages of Acute Inflammation

- Battle between the microbes & host...host usually wins
- 1. Kill invading microbes
- 2. Clear away cell debris
- 3. Repair injured tissue

Effects of Inflammation • Release of histamine: acts as a vasodilator; when cells are damaged, it's released from basophils & mast cells which causes vasodilation in nearby capillaries & venules...leads to redness, warmth, and swelling • Clotting factors arrive along with macrophages and cytokines that attract more phagocytes

- Leukocytosis also occurs—an increase in leukocytes in the blood
- **Pus**—accumulation of dead phagocytes, cells, cell debris, and other tissue debris; only caused by bacteria

Brain Check

- 1. What are the 4 cardinal signs of inflammation?
- 2. What effect does histamine have on blood vessels?
- 3. What is leukocytosis?
- 4. What infectious organism causes pus to form?

Immunity

- **Immunity** is the ability of an organism to recognize and defend itself against infectious agents.
- In contrast, **susceptibility** is the vulnerability of the host to harm by infectious agents.
- 2 major types: innate & adaptive

Active vs. Passive Immunity

- **Passive** immunity: when ready made Ab are introduced into the body
 - Naturally acquired passive: passed from mother to child
 - Artificially acquired passive: exposure to Ab made by other hosts (antivenins, plasma serums, antitoxins); temporary

Brain Check

- 1. When a mother breastfeeds and passes antibodies to her child, this is an example of
- a. Artificially acquired active immunity
- b. Artificially acquired passive immunity
- c. Naturally acquired active immunity
- d. Naturally acquired passive immunity

Dual Nature of the Immune System

• Humoral immunity: carried out by Ab circulating in the blood which stimulate B cells to release Ab BEFORE FOREIGN SUBSTANCES ENTER THE CELL

- Clear out foreign substances like bacteria, bacterial toxins, and viruses
- Cellular immunity: carried out by T cells AFTER FOREIGN SUBSTANCES HAVE ENTERED THE CELL
 - Clear out virus infected-cells & defend against fungi, eukaryotic parasites, cancer, & foreign tissue (transplants)

General Properties of Immune Responses

- 1. Recognition of self vs. nonself
- 2. Specificity

 reacts in different ways to each foreign substance
- Heterogeneity

 specific response to a variety of different foreign Ag
- 4. Memory

- quick response to previous foreign substances years or decades later

Hum	Humoral Immunity—Types of Antibodies						
IgA	protects against pathogens; found in nasal discharge, saliva, breast milk and bowel fluid	IgG	protects the body; main antibody in blood; only one that can pass through the placenta; widely distributed to the blood and tissue				
IgD	plays a role in the induction of antibody production; present on the surface of B cells	IgM	key role in the initial immune system				
IgE	believed to be related to immunity reactions to parasites, and has recently become known as a key factor of allergies						

	nity—Types of T cells lenged by Ag, the cells e of the following:
Killer (or cytotoxic) (T _c)	Destroy virus-infected and damaged cells
Memory	Allows the body to recognize previously encountered Ag
Helper (Тн)	Boost the immune response by stimulating B-cells to begin antibody production & activates more killer T cells
**Natural killer cells	Not classified as B or T cells, but they nonspecifically kill cancer & virus-infected cells without a specific immune response

Active	Passive
Process of inducing active immunity by vaccines or toxoids; <i>long-term</i>	Process of introducing ready- made Ab into an unprotected individual by antisera or antitoxins; <i>temporary</i>
- Vaccine: a substance that contains an Ag to which the immune system responds -Toxoid: an inactivated toxin that is no longer harmful, but retains antigenic properties	-Antisera: blood serum from animals (horses, cows, pigs) -Antitoxins: Ab against specific toxins
Example: MMR, meningitis	Example: botulism, rabies, Hep A

Overview of Immunological Disorders

Terms to know:

- **Immunological disorder**: condition that results from an inappropriate or inadequate immune response
- Hypersensitivity or allergy: an exaggerated or inappropriate reaction to a foreign substance

Four types:

- 1. Type I: Immediate
- 2. Type II: Cytotoxic
- 3. Type III: Immune Complex
- 4. Type IV: Delayed

Type I: Immediate Hypersensitivity

• aka anaphylaxis

- Generalized anaphylaxis: systemic reaction in which the airways are constricted
- Anaphylactic shock: large decrease in BP
- Definition: when the **sensitizing dose** (initial contact) is followed by a latent period and then the next contact, or **shocking dose**, of the allergen (Ag) causes Ab to produce a hypersensitive response
- Examples: asthma, pollen, food, dander, insect stings

Type II: Cytotoxic Hypersensitivity

- Definition: when specific Ab react with cell surface Ag that are recognized as foreign leading to killer cell activity
- Examples: receiving the wrong blood type in transfusions & hemolytic disease of newborns

Type III: Immune Complex Hypersensitivity

- Definition: when large Ab-Ab complexes are formed and persist (these are usually destroyed by phagocytes), causing a hypersensitive response
- Can become chronic if the Ag persists

• Examples: **serum sickness** (horse serum in a vaccine)

Autoimmune Disorders

 Occur when individuals become hypersensitive to specific Ag on cells or tissues of their own bodies, producing autoantibodies

Causes:

- Genetic factors
- Antigenic mimicryThymus malfunction
- Mutations
- Sympathetic nervous
- system damage

Examples: myasthenia gravis, rheumatoid arthritis

Immunodeficiency Diseases

- **Primary**: caused by genetic defects that cause a failure of the thymus gland or Peyer's patches to develop normally so there is a lack of/defective B and T cells
 - Example: severe combined immunodeficency
- Secondary: nongenetic causes such as infectious agents, malignancies, immunosuppressants, some chemotherapeutic drugs, certain antibodies, & radiation
 - Examples: TB, leprosy, AIDS, leukemia

