INTRODUCTION TO MICROBIOLOGY

CHAPTERS 1, 3, & 9 (PGS. 240-253)

Unit 1 Objectives:

- 1. Describe current microbiological research practices.
- 2. Describe the 5 major types of microbes.
- 3. Explain taxonomy and scientific naming. 4. Describe different types of stains and microbial
- preparation for microscope viewing.5. Identify and use the light microscope.

Microbiology 101

- SO...what is microbiology?
- What is a microbe?
- 2 dimensions of microbiology:
- I. Types of microbes
- 2. What microbiologists do

Roles of Microbes

- Pathogens
- Food chain
- Autotrophs Decomposers
- Digestive
- Foods and fermentation
- Antibiotics
- Biotechnology
- Bioremediation
- Disease Research

Why Use Microbes in Research?

- I. Size/ Structure
- 2. Large populations
- 3. Rapid Growth Rate
- 4. Research Benefits
 - Vaccines
 - Antibiotics

Health-Related Fields of Study

- Immunology
- Epidemiology
- Etiology
- Bioremediation

Fields of Study using Application

- Infection Control
- Chemotherapy

Industrial Microbiology

- Biotechnology

Brain Check...

- I. How can microorganisms be beneficial?
- 2. What is the difference between epidemiology and etiology?
- 3. Name 5 bacterial diseases.
- 4. Name 5 viral diseases.

Terms to know

- Prokaryotic: cells WITHOUT a nucleus
- Eukaryotic: cells WITH a nucleus
- Autotroph: organisms that produce their own food using sunlight
- Chemotroph: organisms that consume inorganic or organic substances for nutrition
- Heterotroph: organisms that have to consume other organisms for food (carnivores, omnivores, herbivores)

Overview of Microbes

I.Viruses

- 2. Prokaryotes—NO NUCLEUS
 Unicellular (single-celled)
- 3. Eukaryotes—HAVEA NUCLEUS
 Unicellular & multicellular, (many-celled)

Viruses

- Nonliving because it doesn't display characteristics of life until it has a host
- Simple structure
- Capsid
- Nucleic acid
- Smaller relatives
- Viroids
- Prions

Microbes: Other Non-living Infectious Agents

- <u>Prions</u>—proteins that do not have any nucleic acids, but instead cause other proteins to fold incorrectly.
 - responsible for many animal diseases like mad cow disease and the human equivalent Creutzfeldt-Jakob disease.

ex. Kuru—occurred in many tribal places

Eukaryotic Parasites

- Protists

 Ex. amoeba
- Fungi
- Animals:
- I. Helminths
 - Ex.Worms (flat, round, & segmented)
- 2. Arthropods
 - Ex.Ticks, insects, fleas
 - Cause/transmit disease in their microscopic stages or as carriers

Germ Theory

- Theory definition:
- Microorganisms can invade other organisms and cause disease
- Important Contributors:
- Koch
- SemmelweissLister
- lenner
- Pasteur
- Pasteur

Koch's Postulates

- 1. The bacteria must be present in every case of the disease.
- 2. The bacteria must be isolated from the host with the disease and grown in pure culture.
- 3. The specific disease must be reproduced when a pure culture of the bacteria is inoculated into a healthy susceptible host.
- 4. The bacteria must be recoverable from the experimentally infected host.

Please Wash Your Hands!!!

- Semmelweiss: work demonstrated that hand-washing could drastically reduce the number of women dying after childbirth
- Joseph Lister: father of aseptic technique in surgery

Immunology

- Edward Jenner
- pioneer of smallpox vaccine, the world's first vaccine.
 "the father of immunology"
- the lather of immunology

Louis Pasteur

Pasteurization
 Rabies vaccine

Future Trends

- Recombinant Microbes
- Drugs
- Hormones

• Vaccines

- Gene therapy
- Bacteriophage therapy
- Genomics

History of the Microscope

- Microscope Development
- Robert Hooke
- Anton van Leeuwenhoek

History of the Microscope

Robert Hooke

• Used the compound microscope to study cork and came up with the name "cells"

He drew this with a QUILL pen...real talk!

History of the Microscope

Anton von Leeuwenhoek

- First person to witness (and record) looking at a live cell under a microscope...called them animacules
- He made over 500 different types of microscopes
- <u>FYI</u>: It contained one lens and used only nature light to view objects

Light Microscopy Types

- Condenser controls the amount of light a specimen receives
- Bright Field • Light passes through the microorganisms
- Dark Field
- Light-sensitive microorganisms
 Lack contrast with a bright field
 Light reflects off of the specimen at an angle

Fluorescence Microscopy

- Uses ultraviolet light
- Natural fluorescence (yellow or orange) versus **flouorochromes** (dyes that bind to nucleic acid & show up on a dark background)
- FAb staining: diagnostic process using flouorochromes to tag Ab for the suspected antigen that are then added to a sample of blood or sputum...if the antigen is present,Ab + antigen = positive diagnosis

Imaging Techniques

- Confocal Microscopy (UV):
 - $^\circ$ Uses laser light to thin sections through a specimen with 40x greater resolution
- Digital Microscopy:

 $^\circ\,$ uses computer techniques to $\,$ automatically focus, , adjust light, and take pictures that can be saved and uploaded

Staining Principles

- What is a stain?
 - A stain, or dye, is a molecule that can bind to cellular structure and give it color...because cytoplasm is clear
- Why do we use them?
- 1. To help investigate major groups
- 2. Examine structural and chemical differences in cells
- 3. Look at parts of the cell

Staining Principles

- Basic stains:
- most commonly used
- positively charged or cationic
- Most cell membranes are negatively charged
- Ex. Methylene blue & crystal violet

Acidic stains:

- Attracted to certain cell parts
- Ex. Eosin (dark red) & picric acid (yellow)

Staining Principles

I. Simple Stains:

- Uses a single dye
- Reveals basic cell structures and arrangements
- Ex. Methylene blue, crystal violet, & carbolfuchsin

2. Differential Stains: Gram & Ziehl-Neelsen

- Using 2 or more dyes
- Distinguishes between 2 kinds of organisms or 2 different parts of it

3. Special Stains: Negative, Flagellar, & Endospore

Ziehl-Neelsen Acid Fast Stain

Acid Fast Bacteria

- Mycobacterium (tuberculosis & leprosy)
- Stain red because of the lipids in their cell membranes

Negative staining

Cell Capsule

 Interferes with the ability to accept the stain so you stain the background dark and the cells show up

Tools of Classification: Dichotomous Keys

- Aid in identifying unknown organisms
- Pairs of statements with two choices of characteristics
- This will lead to another pair of characteristics..and so on...
- Only one choice will apply to the unknown organism

- 2. The first letter in the first word (Genus) is <u>capitalized</u>, and the second word is written <u>lower case</u>. Ex: Homo sapiens
- 3. The <u>scientific</u> name must be underlined OR written in italics. Ex: <u>Homo sapiens</u> Homo sapiens

Brain Check...

- 1. In a scientific name, what classification level is capitalized?
- 2. Why don't scientists use common names?

Brain Check...

- 1. What two levels of classification are bigger than phylum?
- 2. What memory aid can help you remember the levels of classification we currently use?
- 3. What 2 levels of classification are used in scientific naming?

Application Questions

• Group assignment/class dicussion next week

Unit I Lab

- I. Lab: Introduction to Microscopes (due at the end of class)
- 2. Lab Report #1: due next week using your lab notebook